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Energy bounds for isoelectronic molecular sets
and the implicated order
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By representing molecules as vectors whose components are their nuclear charges, a
theorem that allows to order Born-Oppenheimer energies of sets of isoprotonic-isoelectronic
molecules is stated. Upper and lower bounds for these sets are derived, along with other
general energy inequalities involving homonuclear systems and molecules with common
molecular fragments. These inequalities imply that the sets of molecules under consid-
eration are endowed with the structure of a partially ordered set (POSET). Some prop-
erties related to this structure are discussed.
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1. Introduction

Most of quantum chemical studies use the Born–Oppenheimer approxi-
mation and focus on searching minima and other critical points at the poten-
tial energy hypersurface E(R) to characterize molecular geometry and compute
molecular properties from the corresponding electronic wave functions. Usu-
ally, Hamiltonian operators are assumed to be dependent only on the spatial
variables associated with each particle belonging to the system. However, some
authors have made efforts to consider nuclear charges as another variable [1–7].
In this context, a more general potential energy function −E(Z, R)− appears, as
well as its constant geometry profile E(Z). Analysis of the behavior of this last
function have lead to some inequalities that establish interesting energy relations
among different sets of isoelectronic molecules [4,6,7]. Recently, some applica-
tions of these relations have been reported [8,9].

Those inequalities have two unsettled issues: first, they contain a problem-
atic second-order term on nuclear charge variables, which prevents from setting
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general energy relations between pairs of molecules. Although under certain par-
ticular conditions this term can be removed [6,7], a general condition to deal
with it has not been reported. Second, they are strongly restricted by nuclear
geometry, so they are only valid as long as all related molecules share the same
nuclear configuration.

In this paper, we aim at these two issues. We define a sufficient condi-
tion to ensure that second-order term being positive definite, so that it can be
removed to obtain an inequality that is linear in the nuclear charge variable.
Then, starting from the set of molecules defined by such condition, we derived a
new inequality that relates molecular energies corresponding to minimum energy
configurations. We also illustrate some potentialities of this inequality with some
examples. Finally, we introduce a mathematical structure underlaying the set of
isoprotonic-isoelectronic molecules and their energies.

2. Basic definitions concerning Z as a variable

2.1. Nuclear charge semispace Z
N

We shall introduce, following the ideas proposed by Mezey [4,6,10], a vec-
tor Z whose components Zi are the charges of the nuclei of a molecular system.
For our model, each Zi may take any positive real value, in particular zero com-
ponents, i.e., dummy nuclei with zero charges are allowed. We shall define the
operations vector sum, vector–scalar product and vector–vector inner product in
the common way: Given

Zk = (Zk1, . . . , Z
k
N), Zm = (Zm1 , . . . , Z

m
N), α ∈ R+,

then

Zm + Zk = (Zm1 + Zk1, . . . , Z
m
N + ZkN),

αZk = (αZk1, . . . , αZ
k
N),

ZkZm =
∑

i

Zki Z
m
i . (1)

On previous works [4–7,10,11] an structure of Euclidean space has been assumed
to this set of charge vectors with the operations defined above. This is not rig-
orous since, although Z vectors were allowed to be “added” and “multiplied by
an scalar” according to the usual definitions, actually only positive scalars had
been used. Even though it seems to satisfy all the axioms of a linear space, the
existence of the inverse element has not been shown. Besides, in those papers the
inner product between vectors is allowed but is not necessarily associated with
an Euclidean metric. To avoid confusion, we will associate to Z vector set an
structure of vector semispace with inner product, instead of an Euclidean Space
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structure. A vector semispace defined over the positive real field R
+, is a vector

space with the vector sum provided by an structure of Abelian semigroup noted
additively [12].

To take into account the nuclear configuration from this perspective, each
component of any nuclear charge vector is associated with a three-dimensional
vector which defines the position of the corresponding nucleus.

(Z1, Z2, . . . , ZN)

↓ ↓ . . . ↓

R1 R2 . . . RN.

(2)

We will start with a constant geometry approach so that the ith component of
any nuclear charge vector will be associated with a unique spatial vector Ri . In
this context, working with a fixed geometry means that we are constrained to the
E(Z) manifold defined by nuclear charges.

2.2. The polyhedron

Previous works have focused in certain convex subsets of Z
N that allow

to take advantage of the concavity properties of the potential energy function.
This sets have been defined in different ways: Mezey used convex hulls and sim-
plexes [4,6], while Daza and Villaveces considered geometrical simplexes and sim-
plicial complexes [7,11]. In this work we will consider polyhedra in ZN , since they
include the previous ideas within a simpler mathematical frame.

Definition 1. Given a set S ⊂ Z
N,S = {Z1, . . . ,ZP}, we define the polyhedron

generated by S as:

P(S) =
{

Z : Z =
p∑

k

αkZk,Zk ∈ S,

p∑

k

αk = 1, αk � 0

}
. (3)

The vectors Zk ∈ S are the polyhedron vertices and p is the dimension of
the polyhedron. In the following we will be involved in the search of relations
between elements of this type of sets.

2.3. A first energy relation between isoelectronic molecules

Daza [7] showed that Born–Oppenheimer operator – whose expected value
generates the potential energy function – of any element in a polyhedron in Z

N
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can be expressed in terms of its vertices as:

Ĥe(Z)+ V̂NN(Z) =
p∑

k

αk

(
Ĥe(Zk)+ V̂NN(Zk)

)

+
p∑

l>k

p−1∑

k

m∑

j>i

m−1∑

i

αkαl
(Zki − Zli)(Z

l
j − Zkj )

Rij
, (4)

which may be abbreviated as:

Ĥe(Z)+ V̂NN(Z) =
p∑

k

αk

(
Ĥe(Zk)+ V̂NN(Zk)

)

+1
2

p∑

k

p∑

l

αkαl(Zk − Zl)R−1(Zl − Zk)T , (5)

where

R−1





0 R−1
12 . . . R−1

1N

R−1
12 0 . . . R−1

2N
...

...
...

...

R−1
1N R−1

2N . . . 0




. (6)

Calculating the expectation value of the operator decomposed in such a
way (5), for ψZ(r), yields:

E(Z) =
p∑

k

αk〈ψZ(r)|Ĥe(Zk)|ψZ(r)〉 + 1
2

p∑

k

p∑

l

αkαl(Zk − Zl)R−1(Zl − Zk)T .

(7)

Now we will substitute the function ψZ(r) by the eigen-functions ψZK(r) of the
Hamiltonian of each vertex. Taking into account the variational theorem, we
find the inequality:

E(Z) �
p∑

k

αkE(Zk)+ 1
2

p∑

k

p∑

l

αkαl(Zk − Zl)R−1(Zl − Zk)T

︸ ︷︷ ︸
QQQ

. (8)

This inequality brings on a relation between the energies of Z and the Zk

molecules. However, the second-order term QQQ poses problems to compare molec-
ular energies [6,7]. While it can be granted that QQQ is positive definite, it can
be removed without altering the inequality. Notwithstanding there is no nuclear
geometry, independently of nuclear charges [6], such that QQQ � 0.
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Although, there are some sets of nuclear charge vectors that exhibit this property
independently of the geometry, until now only few particular cases have been
found [6,7,11].

On the other hand, it has been required that all molecules implied in the
inequality are in the same nuclear configuration, so this result would be useful
only when the equilibrium geometries of Z and the Zk are close enough. Despite
of its limitations, Stankevich has been able to use this results to explain the sta-
bility of B − N substituted carbon nanotubes [8]. In the following sections, we
will introduce some further developments which increase the scope of former
works.

3. Subsets of ZZZ
N with QQQ � 0

Inasmuch as QQQ depends on vertices generating the polyhedron, the problem
of defining a subset of Z

N such that QQQ � 0 can be solved choosing an appropri-
ate set of vertices. In the following we will define a set with this property.

Definition 2. Be T the set of permutations P that can be decomposed in trans-
positions (i, j) without common terms. We define subsets Sa ⊂ Z

N as those that
satisfy:

If Zk ∈ Sa ∧ Zl ∈ Sa ⇒ ∃P ∈ T : Zk = PZl. (9)

We will now show that any of these sets, i.e. those with elements fulfill-
ing (9), makes QQQ positive definite and let us establish a stronger energy relation
between an element of the polyhedron P(Sa) and its vertices.

Lemma 1. Given Sa = {Z1, . . . ,Zk, . . . ,Zp} and Z ∈ P(Sa), then

E(Z) �
p∑

k=1

αkZk. (10)

Proof. Recall the general expression for QQQ:

QQQ = 1
2

p∑

k

p∑

l

αkαl(Zk − Zl)R−1(Zl − Zk)T . (11)

Since αk � 0 ∀k, if all the terms (Zk − Zl)R−1(Zl − Zk)T are greater or equal
than zero, then their sum will be greater, or equal than zero. Consider one of
such terms: expanding the inner products yields:

(Zk − Zl)R−1(Zl − Zk)T =
m∑

j �=i

m∑

i=1

(Zkj − Zlj )(Z
l
i − Zki )

Rij
. (12)
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If the condition stated in the lemma is fulfilled, the only non-zero terms in the
sum will be those with indexes i, j corresponding to transposed components of
the Zk vector. In such cases we will have Zlj = Zki and Zli = Zkj , so:

(Zkj − Zlj )(Z
l
i − Zki )

Rij
= (Zkj − Zki )(Z

k
j − Zki )

Rij
� 0. (13)

Thus, the only non-zero terms in (11) are positive definite and we conclude:

1
2

p∑

k

p∑

l

αkαl(Zk − Zl)R−1(Zl − Zk)T � 0. (14)

Then, for Z ∈ P(Sa) inequality (8) can be reduced to:

ER(Z) �
p∑

k

αkER(Zk). (15)

Lemma 1 let us set a lineal relation between the molecular energy of any
element in the polyhedron and those of its vertices.

Because of all elements of the set Sa differ only by permutations of their
components, for any Zk ∈ Sa we have:

N∑

i=1

Zki = m. (16)

Thus, for any element in the polyhedron P(Sa):

N∑

i=1

Zi =
N∑

i=1

p∑

k=1

αkZ
k
i =

p∑

k=1

αk
∑

i

Zki = m. (17)

In other words, nuclear charge vectors in the polyhedron so defined corre-
spond to sets of isoprotonic molecules, i.e. molecules with the same total nuclear
charge.

4. An energy relation for molecules in stable configurations

From lemma 1, we will derive a new inequality that relates energies of some
pairs of isoprotonic–isoelectronic molecules, in their minimum energy configura-
tions. For a set of proper vertices Sa, we can assume, without losing generality,
that E(Z1) � E(Zi)∀i; i.e., we can choose the vertex with the lower energy, thus
equation (15) is simplified to:

ER(Z) � ER(Z1). (18)
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The subindex emphasizes that this results holds for any nuclear geometry as long
as it is constant, i.e. it is the same for both terms of the inequality. As a partic-
ular case it holds for the minimum energy configuration of Z,R′

ER′(Z) � ER′(Z1). (19)

Now, if there exists a minimal energy configuration for Z1, minR ER(Z1) =
ER′′(Z1), then necessarily ER′(Z1) � ER′′(Z1), so we have:

min
R

ER(Z) � min
R

ER(Z1). (20)

The vectors Zi differ only by transpositions of their components, thus they corre-
spond to different points of the same potential energy hypersurface profile E(R).
Since the last inequality refers to the geometry corresponding to the absolute
minimum of that hypersurface, we can replace Z1 by any Zi and the result still
holds. Then, we conclude:

Theorem 1. Given Zi ∈ Sa, and Z ∈ P(Sa), then

min
R

E(Z) � min
R

E(Zi), (21)

as long as both minima exist.

This theorem establishes a sufficient condition for the existence of an order
relation between two isoprotonic molecules in their minimum energy configura-
tions.1

Given two molecules with nuclear charge vectors ZA and ZB, we want
to know how their energies are related. Therefore, we must determine if: (a)
E(ZA) � E(ZB) or (b) E(ZB) � E(ZA). To check (a) we act with the set of
permutations T over ZA, to generate the set SA = {ZA1 . . .ZAp}. According to
theorem 1, if ZB ∈ P(SA) then E(ZB) � E(ZA). This is true if and only if
ZB = ∑

i αiZ
Ai (definition 1); that means, if the linear equations system

∑

i

αiZ
Ai
1 = ZB1

∑

i

αiZ
Ai
2 = ZB2

... (22)

∑

i

αiZ
Ai
N = ZBN

1From here on, we will write E(Z) � E(Zk) instead of minR E(Z) � minR E(Zk), and the minimal
energy configuration restriction will be implicitly assumed.
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is solved by a set of positive reals αi � 1. Conversely, to check the second
inequality (b), we act with T over ZB, generating the set SB = {ZB1 · · · ZBp}. If
the linear equations system

∑

i

αiZ
Bi
1 = ZA1

∑

i

αiZ
Bi
2 = ZA2

... (23)

∑

i

αiZ
Bi
N = ZAN

is solved by a set of real numbers 0 � α � 1 then E(ZA) � E(ZB).

In other words, the existence of solutions bounded between zero and one,
for any of these two linear equations systems, establishes a sufficient condition
for the existence of an order relation between the energies of molecules in their
equilibrium geometries. Now, we will show some examples that illustrate the
capabilities of this result.

4.1. Higher bounds for sets of isoprotonic molecules

In previous works has been suggested that homonuclear systems may con-
stitute higher bounds for energies of isoprotonic molecules; although this has
been proved only for diatomic and triatomic molecules in one particular – and
not always chemically meaningful – nuclear geometry [7,11]. The theorem 1
allows us to extend this result to polyatomic molecules in minimum energy con-
figurations.

Corollary 1. The energy of any set of n-atomic isoprotonic-isoelectronic mole-
cules in their minimum energy configurations is bounded from above by the
energy of the corresponding homonuclear system.

Proof. Let Z1 be an arbitrary nuclear charge vector:

Z1 = (Z1, . . . , Zm), (24)

where
∑m

i=1 Z
1
i = NyZi �= 0 ∀i. We want to prove that its energy is less or equal

than the energy of the homonuclear system, (N
m
, . . . , N

m
). To prove this we will

use mathematical induction. First, we permute the first two components of Z1,
generating the vector:

Z2 = (Z2, Z1, Z3, . . . , Zm).
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According to theorem 1, for Za = 1
2 Z1 + 1

2 Z2 we have the inequality:

E(Za) � E(Z1),

E

(
Z1 + Z2

2
,
Z1 + Z2

2
, Z3, . . . , Zm

)
� E(Z1, Z2, . . . , Zm), (25)

This inequality defines a higher bound for the original vector. Now we permute
the third component of Za with its first and second components, to obtain a new
set of vectors

Za =
(
Z1 + Z2

2
,
Z1 + Z2

2
, Z3, . . . , Zm

)
,

Zb =
(
Z3,

Z1 + Z2

2
,
Z1 + Z2

2
, Z4, . . . , Zm

)
, (26)

Zc =
(
Z1 + Z2

2
, Z3,

Z1 + Z2

2
, Z4, . . . , Zm

)
.

With these vectors acting as vertices, we construct a new vector: Zγ = 1
3 Za +

1
3 Zb + 1

3 Zc. From theorem 1 we obtain E(Zγ ) � E(Za) and taking into account
inequality (25) we get:

E(Zγ ) � E(Z1),

E

(
Z1 + Z2 + Z3

3
,
Z1 + Z2 + Z3

3
,
Z1 + Z2 + Z3

3
, Z4, . . . , Zm

)

� E(Z1, Z2, . . . , Zm). (27)

We can repeat this procedure with the vector Zγ ; successive steps will converge
into the homonuclear system. Let us suppose that we have proved:

E

(
n∑

i=1

Zi

n
, . . . ,

n∑

i=1

Zi

n
, Zn+1, . . . , Zm

)
� E(Z1, Z2, . . . , Zm). (28)
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So, we permute the (n + 1)th component of the vector at left with each of its
first n components to get the vector set:

Zk =
(

n∑

i=1

Zi

n
, . . . ,

n∑

i=1

Zi

n
, Zn+1, . . . , Zm

)
,

Zl =
(
Zn+1,

n∑

i=1

Zi

n
, . . . ,

n∑

i=1

Zi

n
, Zn+2, . . . , Zm

)
,

Zm =
(

n∑

i=1

Zi

n
, Zn+1,

n∑

i=1

Zi

n
, . . . ,

n∑

i=1

Zi

n
, Zn+2, . . . , Zm

)
,

...

For Zf = 1
n+1 Zk + 1

n+1 Z1 + · · · , theorem 1 and inequality (28) yield:

E

(
n+1∑

i=1

Zi

n+ 1
, . . . ,

n+1∑

i=1

Zi

n+ 1
, Zn+2, . . . , Zm

)
� E(Z1, Z2, . . . , Zm). (29)

Comparing this inequality with (28) we conclude:

E

(
m∑

i=1

Zi

m
, . . . ,

m∑

i=1

Zi

m

)
= E

(
N

m
, . . . ,

N

m

)
� E(Z1, . . . , Zm), (30)

which proves the corollary.
In this way we have generalized our previous results showing the capabili-

ties of theorem 1. In the same sense this theorem may be used to order the ener-
gies of these homonuclear systems:

Corollary 2. The energy of any homonuclear isoprotonic–isoelectronic molecule
in its minimum energy configuration increases with the number of nuclei.

Proof. Let us consider the following set of vectors:

Z1 =





ltimes︷ ︸︸ ︷
N

l
, . . . ,

N

l
, 0, . . . , 0



 ,

Z2 =





l−1times︷ ︸︸ ︷
N

l
, . . . ,

N

l
, 0,

N

l
, 0, . . . , 0



 ,
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Zp =



0,

ltimes︷ ︸︸ ︷
N

l
, . . . ,

N

l
, 0, . . . , 0



 .

Note that all those vectors have the same number of components, as they were
build by permuting the first null component with each one of the non-null com-
ponents of the first vector. By construction this vectors correspond to different
nuclear configurations of an arbitrary homonuclear system. Now, considering the
element Za = ∑p

k=1
1
l+1 Zk in the polyhedron generated by those vectors, theo-

rem 1 yields:

E(Za � E(Z1)

E





l+1times︷ ︸︸ ︷
N

l + 1
, . . . ,

N

l + 1
, 0, . . . , 0



 � E





ltimes︷ ︸︸ ︷
N

l
, . . . ,

N

l
, 0, . . . , 0



 . (31)

Note that vector at left is an homonuclear system isoprotonic–isoelectronic to
vector at right and that the first one has one more nucleus; therefore, since l is
arbitrary, the corollary is immediately proven.

4.2. Functional groups and their energies

Let us consider the following nuclear charge vectors sharing the last q
components:

ZA = (Za1 , . . . , Z
a
p, Z

c
1, . . . , Z

c
q) = Za ⊕ Zc,

ZB = (Zb1 , . . . , Z
b
p, Z

c
1, . . . , Z

c
q) = Zb ⊕ Zc. (32)

Theorem 1 states that E(ZB) � E(ZA) if the linear equations system
∑

i

αiZ
ai
1 = Zb1

...∑

i

αiZ
ai
p = Zbp

∑

i

αiZ
c
1 = Zc1 (33)

...∑

i

αiZ
c
q = Zcq
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is solved by a set of real numbers {0 � αi � 1}. Equations corresponding to the
common components Zcj are solved by any set of positive real numbers whose
sum is equal to one. For the sets we are considering, i.e. polyhedra in Z

N , this
is always the case; thus, the condition for E(ZB) � E(ZA) is determined by the
first p equations of the system. Since those are the equations that determine the
energy relation E(Za) � E(Zb), we conclude:

Corollary 3. If E(Za) � E(Zb) then E(Za ⊕ Zc) � E(Zb ⊕ Zc), ∀Zc ∈ Z
N .

This is a quite interesting result, as it resembles the functional group concept,
i.e. the idea of a transferable molecular fragment with some invariable proper-
ties associated; in this case, an energetic property.

This resemblance appears clearly in the following example: it is easily veri-
fied, by means of theorem 1, that:

E(CH3) � E(NH2) � E(OH) � E(F). (34)

Corollary 3 states that one can paste a vector Zc to each one of the charge
vectors above without altering the inequalities. Such vector Zc corresponds to a
common molecular fragment R, so we have:

E(R − CH3) � E(R −NH2) � E(R −OH) � E(R − F). (35)

In an isoprotonic–isoelectronic series, the energy of the hydrocarbon is greater
than the that of the amine, the energy of the amine is greater-than the energy of
the alcohol, which is greater than the energy of the halide. When there exist iso-
mers of any of this molecules, the ordering holds for the less energetic isomer as
were required by the theorem. We have not specified the number of electrons, as
it is constant but arbitrary.2 Thus, the energetic order we have found holds for
neutral, cationic and anionic species, e.g.:

E(ϕ − CH3) � E(ϕ −NH2) � E(ϕ −OH) � E(ϕ − F),

E(CH4) � E(NH3) � E(H2O) � E(HF),

E(CH−
3 ) � E(NH−

2 ) � E(OH−) � E(F−),
E(CH+

4 ) � E(NH+
4 ) � E(H3O

+) � E(H2F
+).

More relevant cases of this type of relations can be found, e.g. the results
found by Stankevich [8] concerning the stability of B−N substituted carbon na-
notubes are just a particular case of theorem 1–corollary 3, since the substituted
pair C − C can be as: (6, 6) = 1

2(7, 5)+ 1
2(5, 7).

2Isoelectronic character of equation (4) was discussed in [7]. The number of electrons is held con-
stant and it is not related to the nuclear charge or spatial variables, so it remains arbitrary.



E.E. Daza and A. Bernal / Molecular energy bounds 259

Taking into account theorem 1 we have:

E(B −N) � E(C − C), (36)

Even more, corollary 3 states that the former inequality implies:

E(R − B −N) � E(R − C − C). (37)

If we take R = Cn we conclude that substituting a C − C group by a B − N

group in a carbon structure, as a nanotube, causes a decrease in the energy of
the molecular system. As stated before this is just one particular case, as (37)
states that any substitution of a C−C group by a B−N group in any bounded
molecular system causes a decrease in its energy.

There is a difference between our result an those found by Stankevich. Here
we are considering molecules in minimum energy configurations, so we do not
have to assume that the substitution happens in a “isoestructural” way, i.e. with
minimal changes in nuclear geometry. This is important because a constant geom-
etry approximation is very reasonable in the context considered by Stankevich, but
if the number of substituted groups increases the approximation will be greater.
Therefore, the flexibility afforded by allowing configurational changes achieved in
this work can not be overlooked. As stated by our theorem, Stankevich’s results
are fortunately held anyway.

5. Molecular POSETs

Let us review the methodology we have followed to determine order rela-
tions for molecular energies. Given two isoprotonic–isoelectronic molecules with
nuclear charge vectors ZA and ZB, by acting with the group of permutations T

we generate two sets of vectors, {ZAi} and {ZBi}. Then, we solve the linear equa-
tions systems (22) and (23). If the solutions of (22) are all positive, we conclude
E(ZB) � E(ZA); conversely, if the solutions of (23) are positive, we conclude
E(ZA) � E(ZB).

But it is possible that neither (22) nor (23) have positive solutions; in such
a case, we can not reach any conclusion. As we are not always able to determine
all the energy order relations existing among the elements of a given set of iso-
protonic molecules, it would be laudable to design a proper representation that
let us see all the known relations within a molecular set.

From a mathematical perspective, the structure we are facing is a Partially
Ordered Set (POSET). A POSET is a set endowed with a binary relation � that
fulfills [13]:

(i) a � a∀a, Reflexive,

(ii) a � b ∧ b � a ⇒ a = b, Antisymmetric,
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(iii) a � b ∧ b � c ⇒ a � c, Transitive.

It should be noted that it is not required that, for each pair of elements a and
b in the POSET, either a � b or b � a

The POSETs are commonly represented by Hasse diagrams in which every
element of the set is represented by a different point. The existence of an order
relation a � b is represented by a line ascending from b to a. Nevertheless, if
a point c appears above a point d, it does not necessarily mean that c � d. In
fact, c and d are not related unless there is a sequence of lines (a path) ascending
from one point to the other.

Let us consider a complete set of isoelectronic molecules with total nuclear
charge 10,Z10 (figure 1). We determined all the energy order relations between
elements of this set that can be derived from theorem 1 and put them into
the corresponding Hasse diagram. There is a total of 1722 possible order
relations, two for each molecular pair. Apparently, it means that the correspond-
ing 1722 linear equations systems should be solved. However, by a progres-
sive construction of Hasse diagram, it is easily seen that most of this relations
are associated by transitivity, so that by solving about 50 systems – most of
which can be solved by simple inspection – one can gather all the information
available.

This diagram is completely connected, besides there is a general lower
bound (the null element) corresponding to the united atom and a general upper
bound (the universal element) corresponding to the hydrogen cluster. A POSET
with these characteristics has an interesting property which ensures that given
any subset, it is always possible to find a greater lower bound and a lower upper
bound for all the elements in the subset [13]. In this way, we are now able
to determine narrower bounds within sets of isoprotonic–isoelectronic molecules
than those previously known.

From the inspection of Hasse diagram it can be noted that the greater lower
bound for each subset of molecular systems having the same number of nuclei
are – at least for the subsets of systems with five or less nuclei – those molecules
well known by its abundance in nature.

6. Final remarks

Summarizing, starting from a decomposition of the BO Hamiltonian, we
have defined particular sets of molecules (polyhedra), having the property of
being both isoprotonic and isoelectronic. Afterwards, we have shown how to find
particular sets of vertices such that the energy of any element of the polyhedron
is related to the energies of these vertices by a linear inequality (lemma 1). From
this simplified relation, we have derived an inequality that allows us to compare
energies of any pair of bounded isoprotonic–isoelectronic molecules in nuclear
configurations of minimal energy (theorem 1). From this result, we derived some
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Figure 1. Elements of the POSET Z10. This Hasse diagram shows how molecular energies are
ordered, the lowest energy corresponds to the atom of neon and the highest to the hydrogen cluster.
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bounds for the energies of elements in the polyhedron; in particular, we have
shown that the polyhedron is bounded from above by the energy of the corre-
sponding homonuclear system (corollary 1) and that the energy of homonuclear
systems in the polyhedron increases with the number of nuclei (corollary 2). We
also found that energy relations derived from (theorem 1) can be extended to
new molecules by the addition of any fixed group of atoms to every element
in the polyhedron (corollary 3). At the end we discussed the POSET structure
endowed to sets of isoprotonic–isoelectronic molecules by all this energy order
relations.

We want to emphasize that results presented here are due to algebraic prop-
erties of the Born Oppenheimer Hamiltonian, instead of the behavior of the elec-
tronic wave function or electron density of each molecular system. Actually we
have not evaluated any wave function to derive the energetic inequalities we have
proposed. When we compared families of Born–Oppenheimer operators we con-
sidered nuclear charges as variables and from this approach it has been possible
to show how operators of different molecular systems may be related. From this
considerations, an strong condition to generate sets of molecules whose energies
can be compared has been stated.

This alternative approach, in which emphasis has been done on nuclear
charges as variables, let us manage sets of molecules instead of individual sys-
tems. The fundamental idea behind this proposal is that, in order to grasp a
better concept of chemical structure it is necessary to study sets of molecules,
instead of focusing in one molecule at time. The structure of the POSET of
isoprotonic–isoelectronic molecules, as well as the invariability of energy order
relations including constant atomic groups – suggesting the functional group
idea – show that in fact this broader perspective is giving us additional insight
into the concept of chemical structure. We hope that this ideas can be extended
to cover other properties and help to formalize a concept whose usual definitions
are elusive and that recently has been recognized to be a diffuse concept [14,15].
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